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Abstract. This paper is concerned with the adaptive consensus tracking control problem
for strict-feedback nonlinear multiagent systems with parameter uncertainty under both fixed and
switching topologies. When the topology is fixed, we first propose a novel distributed fusion least-
squares algorithm without regressor filtering, which has a clear advantage that the estimate of each
agent converges to the true parameter value under a weak cooperative persistent excitation condition.
Then, we design a new adaptive consensus tracking control law to guarantee that each agent can
asymptotically track the reference trajectory. After that, we generalize the corresponding results to
the switching topology case. Finally, two examples are given to demonstrate the theoretical results.
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1. Introduction. With the rapid development of computer science and infor-
mation technologies, control systems evolve from single-agent systems to large-scale
networked multiagent systems. The most common control task of multiagent sys-
tems is consensus control, focusing on how each agent of multiagent systems keeps its
state consistent with others through local communication and decision making. The
early studies on consensus control are focused on multiagent systems with exactly
known structures (see [1, 8, 16, 20, 29, 40]). Recently, the wide existence of model
uncertainties and nonlinear terms in real control systems motivates the exploration of
the adaptive consensus control on nonlinear systems. In fact, the adaptive consensus
control is full of challenges since it is not just a simple combination of distributed
identification and consensus control.

For the adaptive consensus control problem, the primary concern is how to deal
with intrinsic model uncertainty such as parameter uncertainty. In general, there are
two common schemes, which are direct scheme and indirect scheme, to cope with pa-
rameter uncertainty. Most of the existing works about the adaptive consensus control
are the direct schemes (see [7, 17, 27, 30, 31, 37]), where the system models are param-
eterized regarding controller parameters estimated directly without system parameter
estimation. For example, Chen et al. in [7] solved the adaptive consensus problem
of nonlinear multiagent systems with nonidentical partially unknown control direc-
tions by constructing a new Nussbaum function. Huang et al. in [17] investigated
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the adaptive consensus control problem for a class of high-order nonlinear systems
with different unknown control directions under the directed graph. Wang, Wen, and
Huang in [31] studied the output consensus problem for a class of systems consist-
ing of multiple nonlinear subsystems with intrinsic mismatched unknown parameters.
In addition, there are some studies on the adaptive consensus control with indirect
schemes (see [6, 23, 24]), in which system parameters are estimated online to calcu-
late controller parameters. Compared with the direct scheme, the indirect scheme
can fully explore the internal structure of systems to enhance the overall stability and
robustness properties of adaptive control systems. It is worth mentioning that the
least-squares (LS) algorithm is an attractive indirect adaptive identification method,
since it can adjust adaptive rates online so that all parametric estimates converge ap-
proximately with the same speed, resulting in performance and robustness advantages
(see [5, 19]). Besides, the LS algorithm has the advantage of averaging out the effect
of measurement noises, resulting in less sensitivity to noisy measurement (see [26]).

In recent years, LS-based adaptive control has received significant attention by
numerous researchers (see [2, 3, 9, 21, 32]). For instance, Chowdhary and Johnson in
[9] presented an approach for combining standard recursive LS-based regression with
direct model reference adaptive control by a recursively updated modification term,
and this approach was effective in solving adaptive control problems whose uncer-
tainty can be linearly parameterized. In [21], Li and Krstic proposed a new adaptive
controller based on a novel LS identification scheme without regressor filtering for sto-
chastic strict-feedback nonlinear systems with unknown parameters. Wang and Liu
in [32] developed a data-based output feedback control method for a class of nonlin-
ear systems with unknown mathematical models, where the LS method was used to
estimate the corresponding Jacobian matrices. However, all of the above works focus
on the LS-based adaptive control of single systems. Due to the good performance of
LS-based adaptive control in single systems, we investigate the adaptive consensus
tracking control problem of nonlinear multiagent systems based on the distributed LS
algorithm in this paper.

In contrast to the previous works, the contributions of this paper include the
following:

\bullet This paper is concerned with the LS-based adaptive consensus tracking prob-
lem for nonlinear multiagent systems with parameter uncertainty under both
fixed and switching topologies. Different from [35], we do not use additional
information transmissions such as local control inputs and local neighborhood
consensus errors among connected agents.

\bullet A novel distributed fusion LS algorithm is proposed without regressor filter-
ing. On one hand, although the distributed identification scheme is motivated
by the discrete-time distributed LS algorithm in [34], the scheme of this paper
is not a trivial generalization from discrete-time systems [34] to continuous-
time systems. The essential difference between these two algorithms is that
the fusion LS does not use the information of differentials of system states,
while the differentials of system states are required to be measurable if gen-
eralizing [34] to continuous-time systems. On the other hand, a cooperative
persistent excitation (PE) condition, weaker than the case that each agent
satisfies the traditional PE condition in [18], is proposed for the fusion LS
algorithm to guarantee that the estimate converges to the true parameter.

\bullet Besides, a new adaptive consensus tracking law is designed based on the
backstepping techniques. Specifically, the adaptive tracking law designed
in this paper guarantees that the equilibrium of the closed-loop system is

D
ow

nl
oa

de
d 

10
/1

3/
22

 to
 1

24
.1

6.
14

8.
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3150 YING WANG, WUQUAN LI, AND JI-FENG ZHANG

globally stable and can make each agent track asymptotically the reference
trajectory. Compared with [1, 10], this adaptive tracking law is also effective
for the systems with parameter uncertainty.

\bullet Different from the direct adaptive consensus schemes in the existing results
(see [7, 17, 27, 30, 31, 37]), this paper adopts the indirect schemes to achieve
adaptive consensus tracking. The advantage of our indirect design is that it
can guarantee the convergence of estimates in addition to achieving the as-
ymptotic consensus tracking. The difficulty in our paper is how to design the
estimator and controller that can simultaneously estimate the true parameter
and track the reference trajectory.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminaries and describes the problem to be studied. Section 3 focuses on the
adaptive consensus tracking with fixed topology. Section 4 generalizes the results in
section 3 to the switching topology case. Section 5 uses two numerical examples to
demonstrate the main results. Section 6 gives some concluding remarks. Appendices A
and C collect some useful tools and proofs of lemmas.

2. Preliminaries and problem formulation. In this section, we first give
some basic concepts in matrix and graph theory, and then formulate the adaptive
consensus tracking problem to be studied.

2.1. Basic concepts. We use x \in \BbbR n and A \in \BbbR m\times n to denote n-dimensional
vector and m \times n-dimensional real matrix, respectively. Moreover, we denote \| x\| =

\| x\| 2 and \| A\| =
\bigl( 
\lambda max(AAT )

\bigr) 1
2 as the Euclidean norm of vector and matrix, re-

spectively, where the notation T denotes the transpose operator, and \lambda max(\cdot ) denotes
the largest eigenvalue of the matrix. Correspondingly, \lambda min(\cdot ) denotes the smallest
eigenvalue of the matrix. For symmetric matrices A \in \BbbR m\times m and B \in \BbbR m\times m, A \geq B
represents that A - B is a positive semidefinite matrix. The Kronecker product of the
matrices A \in \BbbR m\times n and B \in \BbbR p\times q is defined as A\otimes B \in \BbbR mp\times nq. Tr\{ A\} =

\sum m
i=1 aii

is denoted as the trace of matrix A = \{ aij\} \in \BbbR m\times m. Obviously, if A is positive
semidefinite matrix, then Tr\{ A\} \geq \| A\| . col\{ \cdot \} denotes the vector stacked by the
specified vectors, and diag\{ \cdot \} denotes the block matrix formed in a diagonal manner
of the corresponding vectors or matrices.

In order to describe the relationship between the agents, an undirected weighted
graph \scrG = (\scrV , \scrE ,\scrA ) is introduced here, where \scrV = \{ 1, 2, . . . ,m\} is the set of the
agents, \scrE \in \scrV \times \scrV is the edge set describing the communication between the agents,
and \scrA = \{ aij\} \in \BbbR m\times m is the weighted adjacency matrix. The elements of the matrix
\scrA satisfy 0 < aij < 1 if (i, j) \in \scrE , aij = aji and

\sum m
j=1 aij = 1 for all i = 1, . . . ,m.

It is obvious that \scrA is doubly stochastic. Besides, the Laplacian matrix is defined as
\scrL = I  - \scrA , and the neighbor set of the agent i is denoted as \scrN i = \{ j \in \scrV | (i, j) \in \scrE \} 
and each agent can only exchange information with its neighbors. Moreover, a path of
length \ell is a sequence of nodes \{ i1, . . . , i\ell \} satisfying (ij , ij+1) \in \scrE for all 1 \leq j \leq \ell  - 1.
The graph \scrG is called connected if for any two agents i and j, there is a path connecting
them. The diameter D(\scrG ) of the graph \scrG is defined as the maximum length of the
path between any two agents.

2.2. Problem formulation. Consider a multiagent network consisting of m
agents; the dynamic of the ith (i = 1, . . . ,m) agent is described by\Biggl\{ 

\.xi,j = xi,j+1, j = 1, . . . , n - 1,

\.xi,n = ui + fi(xi) + gTi (xi)\theta ,
(2.1)
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where xi = [xi,1, . . . , xi,n]
T \in \BbbR n and ui \in \BbbR are the state and input of agent i, re-

spectively. Besides, \theta \in \BbbR p is an unknown system parameter. The nonlinear function
fi(\cdot ) : \BbbR n \rightarrow \BbbR and gi(\cdot ) : \BbbR n \rightarrow \BbbR p are continuous and locally Lipschitz. Set yr(t) \in \BbbR 
as the reference signal. Then, we give an assumption on the reference signal.

Assumption 2.1. The reference signal yr is n times differentiable, and there exists

a constant M such that
\bigm| \bigm| y(j)r

\bigm| \bigm| \leq M , j = 0, 1, . . . , n, where y
(0)
r = yr.

The goal of this paper is to design an adaptive consensus tracking law to achieve
all agents' asymptotic tracking. In other words, we design the input ui to make

the state xi track the reference trajectory [yr, \.yr, . . . , y
(n - 1)
r ]T for all i = 1, 2, . . . ,m.

To achieve this goal, we first design a distributed adaptive estimation algorithm to
estimate the unknown parameter. Then, we design an adaptive consensus tracking
law to track the reference trajectory based on the parameter estimation. Moreover,
the adaptive consensus tracking problem is considered under two topologies in this
paper. One is the fixed topology, and the other is the switching topology.

Remark 2.2. Actually, model uncertainties inevitably exist in almost all control
problems and there are nonlinear terms of one sort or another in most of the phys-
ical systems [26]. Thus, the adaptive consensus control has become a new hot-spot
issue in the control field, which has widespread applications in plentiful fields such
as mobile robot networks (see [11, 25, 39]), intelligent transportation management
[36], and sensor networks [38]. The above-mentioned facts motivate us to investigate
the adaptive consensus tracking control problem of nonlinear multiagent systems with
parameter uncertainty.

3. The fixed topology. In this section, we consider the adaptive consensus
tracking control problem for strict-feedback nonlinear multiagent systems with param-
eter uncertainty under the fixed topology. To proceed further, we need the following
assumption on the topology.

Assumption 3.1. The network graph \scrG is connected, and the information of the
reference signal yr is available to at least one of the m agents.

Remark 3.2. Assumption 3.1 naturally avoids isolated nodes in the network. More-
over, the connectivity of the topology guarantees all agents can track the reference
signal when the reference trajectory is only available to some of the agents.

3.1. Parameter estimation. Based on the diffusion strategy of neighbor esti-
mates and covariances of nonlinear regressors, a distributed LS algorithm is proposed.

Algorithm 3.1: Fusion LS Algorithm.
For any given agent i \in \{ 1, 2, . . . ,m\} , begin with an initial estimate \=\theta i(0) \in \BbbR p,

an initial value \alpha i(0) \in \BbbR p, and an initial positive definite matrix \Gamma i(0) \in \BbbR p\times p; the
algorithm is recursively defined as follows:

1. Estimation (generate \=\theta i by the own information xi, fi, gi, and ui):\left\{                     

\=\theta i(t) =\alpha i + \Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma ,

\.\Gamma i(t) = - \Gamma igig
T
i \Gamma i,

\.\alpha i(t) = - \Gamma igig
T
i \alpha i  - \Gamma igi(ui + fi)

 - \Gamma i

n - 1\sum 
j=1

xi,j+1

\int xi,n

0

\partial gi(xi,1, . . . , xi,n - 1, \sigma )

\partial xi,j
d\sigma .

(3.1)
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3152 YING WANG, WUQUAN LI, AND JI-FENG ZHANG

2. Fusion (generate \^\theta i(t) by a convex combination of \Gamma j(t) and \=\theta j(t) for j \in \scrN i).
(1) For each agent i, set the initial value at time t:

\Gamma 0,i(t) = \Gamma i(t), \xi 0,i(t) = \Gamma 
 - 1

i (t)\=\theta i(t).(3.2)

(2) Perform the following diffusion process for l = 1, 2, . . . , d, where d \geq D(\scrG ):

\Gamma  - 1
l,i (t) =

\sum 
j\in \scrN i

aij\Gamma 
 - 1
l - 1,j(t), \xi l,i(t) =

\sum 
j\in \scrN i

aij\xi l - 1,j(t).(3.3)

(3) For each agent i, update the estimate \^\theta i(t) as follows:

\^\theta i(t) = \Gamma d,i(t)\xi d,i(t).(3.4)

Remark 3.3. The proposed fusion LS estimator (3.1)--(3.4) in Algorithm 3.1 keeps
the same good characteristics as the traditional single-agent case in [19]. Specifically,
the time derivative from the parametric model is absorbed into the estimator; thus
the need for filtering is removed. Different from [19], we design a new fusion item
(3.2)--(3.4) based on the diffusion strategy, whose analogous fusion method has been
studied in [4, 12, 22]. Moreover, this fusion method can make up for the shortages
of each agent's performance through information exchange to some extent (see Re-
mark 3.13 for details). It is worth noticing that although the fusion item (3.2)--(3.4)
is inspired by the discrete-time distributed algorithm [34], there is an essential dif-
ference between the two algorithms, which is that the fusion LS does not utilize the
differential information of system states but that are required to be measurable if
generalizing [34] to continuous-time systems.

Actually, the fusion item does not have to proceed all the time because the esti-
mation item does not depend on it. It implies that the fusion LS algorithm might be
used in the sampling and event-triggered adaptive control, i.e., the fusion item is only
initiated at the moment of sampling and event-trigger, which can greatly save commu-
nication resources and reduce computational complexity. It is a potential advantage
of this algorithm.

For convenience of further analysis, we first introduce the following notation: \Theta =
col\{ \theta , . . . , \theta \} \in \BbbR mp\times 1, \=\Theta = col\{ \=\theta 1, . . . , \=\theta m\} \in \BbbR mp\times 1, \^\Theta = col\{ \^\theta 1, . . . , \^\theta m\} \in \BbbR mp\times 1,
\~\Theta = col\{ \~\theta 1, . . . , \~\theta m\} \in \BbbR mp\times 1 with \~\theta i = \theta  - \^\theta i, \Gamma = diag\{ \Gamma 1, . . . ,\Gamma m\} \in \BbbR mp\times mp, \Gamma d =
diag\{ \Gamma d,1, . . . ,\Gamma d,m\} \in \BbbR mp\times mp, A d = \scrA d\otimes Ip \in \BbbR mp\times mp with \scrA d = \scrA \cdot \scrA \cdot \cdot \cdot \cdot \cdot \scrA \underbrace{}  \underbrace{}  

d

\triangleq \bigl\{ 
a
(d)
ij

\bigr\} 
m\times m

, and \Psi = diag
\bigl\{ \sum m

j=1 a
(d)
1j gjg

T
j , . . . ,

\sum m
j=1 a

(d)
mjgjg

T
j

\bigr\} 
\in \BbbR mp\times mp.

Remark 3.4. Since \scrA is a doubly stochastic matrix, it is easy to see that \scrA d is

also doubly stochastic, which implies 0 \leq a
(d)
ij \leq 1 and

\sum m
j=1 a

(d)
ij = 1 for i = 1, . . . ,m.

Lemma 3.5. With the fusion LS estimator (3.1)--(3.4), the following equalities
hold for all i = 1, . . . ,m:

\Gamma  - 1
d,i (t) =

m\sum 
j=1

a
(d)
ij \Gamma 

 - 1

j (t),(3.5)

\^\theta i(t) = \Gamma d,i(t)

m\sum 
j=1

a
(d)
ij \Gamma 

 - 1

j (t)\=\theta j(t),(3.6)

\.\Gamma d,i =  - \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j \Gamma d,i.(3.7)
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Proof. The proof is given in Appendix B.

Next, we state the stability results for the fusion LS algorithm.

Lemma 3.6. Let the maximal existence interval of solutions of (2.1) be [0, tf ).
Then, with any \alpha i(0) \in \BbbR p and any positive definite matrix \Gamma i(0) \in \BbbR p\times p for i \in 
\{ 1, . . . ,m\} , the functions ( \^\Theta (t),\Gamma d(t)) generated by the fusion LS algorithm (3.1)--
(3.4) are bounded.

Proof. By \alpha i = \=\theta i(t) - \Gamma i

\int xi,n

0
gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma and (3.1), we have

\.\alpha i(t) = - \Gamma igig
T
i

\biggl( 
\=\theta i(t) - \Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma 

\biggr) 
 - \Gamma igi(ui + fi)

 - \Gamma i

n - 1\sum 
j=1

xi,j+1

\int xi,n

0

\partial gi(xi,1, . . . , xi,n - 1, \sigma )

\partial xi,j
d\sigma 

=\Gamma igig
T
i \Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma  - \Gamma igi(g
T
i
\=\theta i + ui + fi)

 - \Gamma i

n - 1\sum 
j=1

xi,j+1

\int xi,n

0

\partial gi(xi,1, . . . , xi,n - 1, \sigma )

\partial xi,j
d\sigma .(3.8)

Substituting (3.1) and (3.8) into the derivative of \=\theta i(t) yields

\.\=\theta i(t) = \.\alpha i +
\.\Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma 

+ \Gamma igi(xi) \.xi,n + \Gamma i

\int xi,n

0

dgi(xi,1, . . . , xi,n - 1, \sigma )

dt
d\sigma 

= \.\alpha i  - \Gamma igig
T
i \Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma + \Gamma igi(g
T
i \theta + ui + fi)

+ \Gamma i

n - 1\sum 
j=1

xi,j+1

\int xi,n

0

\partial gi(xi,1, . . . , xi,n - 1, \sigma )

\partial xi,j
d\sigma 

=\Gamma igig
T
i \Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma  - \Gamma igi(g
T
i
\=\theta i + ui + fi)

 - \Gamma i

n - 1\sum 
j=1

xi,j+1

\int xi,n

0

\partial gi(xi,1, . . . , xi,n - 1, \sigma )

\partial xi,j
d\sigma 

 - \Gamma igig
T
i \Gamma i

\int xi,n

0

gi(xi,1, . . . , xi,n - 1, \sigma )d\sigma + \Gamma igi(g
T
i \theta + ui + fi)

+ \Gamma i

n - 1\sum 
j=1

xi,j+1

\int xi,n

0

\partial gi(xi,1, . . . , xi,n - 1, \sigma )

\partial xi,j
d\sigma 

=\Gamma igig
T
i (\theta  - \=\theta i).(3.9)

Noting \~\theta i(t) = \theta  - \^\theta i(t), (3.1), (3.6)--(3.7), and (3.9), we get

\.\^\theta i(t) = \.\Gamma d,i

m\sum 
j=1

a
(d)
ij \Gamma 

 - 1

j
\=\theta j(t) + \Gamma d,i

m\sum 
j=1

a
(d)
ij

\.\Gamma 
 - 1

j
\=\theta j(t) + \Gamma d,i

m\sum 
j=1

a
(d)
ij \Gamma 

 - 1

j
\.\=\theta j(t)
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= - \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j \Gamma d,i

m\sum 
j=1

a
(d)
ij \Gamma 

 - 1

j
\=\theta j(t) + \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j
\=\theta j(t)

+ \Gamma d,i

m\sum 
j=1

a
(d)
ij \Gamma 

 - 1

j \Gamma jgjg
T
j (\theta  - \=\theta j(t))

= - \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j
\^\theta i(t) + \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j
\=\theta j(t) + \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j (\theta  - \=\theta j(t))

=\Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j
\~\theta i(t),

or, equivalently,
\.\~\theta i(t) =  - \.\^\theta i(t) =  - \Gamma d,i

\sum m
j=1 a

(d)
ij gjg

T
j
\~\theta i(t), which implies

\.\~\Theta (t) =  - \.\^\Theta (t) =  - \Gamma d\Psi \~\Theta .(3.10)

From a
(d)
ij \in [0, 1] we have

\sum m
j=1 a

(d)
ij gjgj \geq 0 and \Psi \geq 0. By (3.7) we obtain

\.\Gamma  - 1
d = \Psi ,(3.11)

which derives \Gamma  - 1
d (t) \geq \Gamma  - 1

d (0). Then, from (3.5) and \Gamma j(0) > 0 for all j = 1, . . . ,m,

we have \Gamma  - 1
d,i (0) =

\sum m
j=1 a

(d)
ij \Gamma 

 - 1

j (0) > 0, i.e., \Gamma  - 1
d (0) > 0. Thus, we get \Gamma  - 1

d (t) > 0
and \Gamma d(t) > 0.

By (3.7), it can be seen that \.\Gamma d \leq 0, which gives \Gamma d(t) \leq \Gamma d(0). Hence,

0 < \Gamma d(t) \leq \Gamma d(0),(3.12)

which shows that \Gamma d(t) is bounded.
Take a Lyapunov function as V\~\Theta = \~\Theta T\Gamma  - 1

d
\~\Theta . Then,

\.V\~\Theta = 2\~\Theta T\Gamma  - 1
d

\.\~\Theta + \~\Theta T \.\Gamma  - 1
d

\~\Theta 

=  - 2\~\Theta T\Gamma  - 1
d \Gamma d\Psi \~\Theta + \~\Theta T\Psi \~\Theta 

=  - \~\Theta T\Psi \~\Theta \leq 0.(3.13)

From (3.13) we get V\~\Theta (t) \leq V\~\Theta (0), and by \Gamma  - 1
d (t) \geq \Gamma  - 1

d (0) we obtain

\~\Theta T (t)\Gamma  - 1
d (0) \~\Theta (t) \leq \~\Theta T (t)\Gamma  - 1

d (t) \~\Theta (t) \leq \~\Theta T (0)\Gamma  - 1
d (0) \~\Theta (0),

and hence, \bigm\| \bigm\| \bigm\| \~\Theta (t)
\bigm\| \bigm\| \bigm\| 2 \leq 

\lambda max

\bigl( 
\Gamma  - 1
d (0)

\bigr) 
\lambda min

\bigl( 
\Gamma  - 1
d (0)

\bigr) \bigm\| \bigm\| \bigm\| \~\Theta (0)
\bigm\| \bigm\| \bigm\| 2 =

\lambda max (\Gamma d(0))

\lambda min (\Gamma d(0))

\bigm\| \bigm\| \bigm\| \~\Theta (0)
\bigm\| \bigm\| \bigm\| 2 .

Thus, \~\Theta (t) and \^\Theta (t) are bounded.
In summary, the boundedness of

\bigl( 
\^\Theta (t),\Gamma d(t)

\bigr) 
is proved.

3.2. Adaptive consensus tracking control law. In this section, we aim to
design a new adaptive consensus tracking law based on neighbor information, which
allows each agent to asymptotically track the reference trajectory.
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We assume there is a leader node, labeled 0 and described by\Biggl\{ 
x0,j = y(j - 1)

r , j = 1, . . . , n - 1,

x0,n = y(n - 1)
r ,

(3.14)

and hence, \Biggl\{ 
\.x0,j = x0,j+1, j = 1, . . . , n - 1,

\.x0,n = y(n)r .
(3.15)

Then, the asymptotic tracking of agent i is achieved if and only if xi \rightarrow x0(t \rightarrow \infty ).
With the aid of the backstepping techniques, we define a new variable zi =

[zi,1, . . . , zi,n]
T , i = 0, 1, . . . ,m, with

zi,j = xi,j  - \alpha i,j , j = 1, . . . , n,(3.16)

where \left\{     
\alpha i,1 = 0,

\alpha i,2 =  - k1zi,1,

\alpha i,j+1 =  - kjzi,j  - zi,j - 1 + \.\alpha i,j , j = 2, . . . , n - 1,

(3.17)

and kj > 0 for all j = 1, . . . , n - 1. Then, for all i = 1, . . . ,m we have\left\{     
\.zi,1 = zi,2  - k1zi,1,

\.zi,j = zi,j+1  - kjzi,j  - zi,j - 1, j = 2, . . . , n - 1,

\.zi,n = ui + fi(xi) + gTi (xi)\theta  - \.\alpha i,n

(3.18)

and \left\{     
\.z0,1 = z0,2  - k1z0,1,

\.z0,j = z0,j+1  - kjz0,j  - z0,j - 1, j = 2, . . . , n - 1,

\.z0,n = y(n)r  - \.\alpha 0,n.

(3.19)

Remark 3.7. Actually, \alpha i,j (j = 1, . . . , n) are a set of virtual controllers, which

can make the positive definite Lyapunov function Vij = 1
2

\sum j
l=1(zi,l  - z0,l)

2 tend to
zero for all i = 1, . . . ,m and j = 1, . . . , n  - 1. Moreover, these virtual controllers
and new variables can guarantee that each agent asymptotically tracks the reference
trajectory (i.e., xi  - x0 \rightarrow 0) only if the nth dimensions of new variables achieve the
asymptotic tracking (i.e., zi,n \rightarrow z0,n), which simplifies the adaptive tracking problem.
This point is described in the following lemma.

Lemma 3.8. For the system (3.18), if

lim
t\rightarrow \infty 

(zi,n  - z0,n) = 0 \forall i = 1, . . . ,m,

then the original system (2.1) can achieve asymptotic tracking, i.e.,

lim
t\rightarrow \infty 

(xi  - x0) = 0 \forall i = 1, . . . ,m.

Proof. The proof is given in Appendix C.
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3156 YING WANG, WUQUAN LI, AND JI-FENG ZHANG

Next, we show the design idea of the adaptive consensus tracking control law.
To do so, let z\ast n = [z1,n, . . . , zm,n]

T , e\ast n = [z1,n  - z0,n, . . . , zm,n  - z0,n]
T , and B =

diag\{ b1, . . . , bm\} \in \BbbR m\times m, where bi = 1 means the agent i can directly obtain the
information of the reference signal yr, and bi = 0 otherwise.

According to Lemma 3.8, we just design the tracking control law ui to make zi,n \rightarrow 
z0,n. It is worth noticing that not all agents can obtain directly the reference signal.
Thus, most of the agents have to utilize the state information from their neighbors
to track the reference trajectory. Consider V\ast n = 1

2e
T
\ast n(B + \scrL )e\ast n and compute the

derivative of V\ast n. Then, the following tracking control law can be proposed:\biggl\{ 
\=ui = si + \rho i sign(si) - fi(xi) + \.\alpha i,n  - gTi

\^\theta i(t),
si =

\sum 
j\in \scrN i

aij(zj,n  - zi,n) + bi(z0,n  - zi,n),
i = 1, . . . ,m,

where \rho i is a sufficiently large number making \rho i > | \.z0,n| for any time. It is noted that
the existence of \rho i is guaranteed by Assumption 2.1, because \.z0,n is a linear function

of yr, y
(1)
r , . . . , y

(n)
r from (3.19) and the proof of Lemma 3.8. However, z0,n, i.e., the

information of x0, may not be known to each agent. Thus, we estimate \rho i online as
\.\^\rho i = \beta i| si| with \beta i > 0 for all i = 1, . . . ,m.

The adaptive consensus tracking law is summarized as follows.
Algorithm 3.2: Adaptive consensus tracking control law.\biggl\{ 

ui = si + \^\rho i sign(si) - fi(xi) + \.\alpha i,n  - gTi
\^\theta i(t),

\.\^\rho i = \beta i| si| 
(3.20)

for all i = 1, . . . ,m, where si =
\sum 

j\in \scrN i
aij(zj,n  - zi,n) + bi(z0,n  - zi,n).

Remark 3.9. It is emphasized that the controller (3.20) in Algorithm 3.2 is real-
izable though \.\alpha i,n is included. Actually, \.\alpha i,n can be indicated as the function of kj
and zi,j for j = 1, . . . , n by induction (the proof of this claim is similar to the analysis
of (C.3) and so is omitted), so \.\alpha i,n could be expressed as the linear function of zi,j
only if the control parameters kj (j = 1, . . . , n) are given.

Although the adaptive tracking law in this paper is enlightened by the distributed
control laws in [10], there are substantial differences between them. The most essen-
tial difference is that the adaptive tracking law (3.20) can deal with the asymptotic
tracking problem for the system with parameter uncertainty, while the control law in
[10] is only valid for the systems with exactly known structure.

3.3. Main results. In this part, the main results of the adaptive consensus
tracking control are established under the fixed topology. For convenience of analysis,
let \Lambda = [\^\rho 1 sign(s1), . . . , \^\rho m sign(sm)]T \in \BbbR m\times m, G = diag\{ g1, . . . , gm\} \in \BbbR mp\times m.

In the following theorem, we will state the stability results of the control scheme.

Theorem 3.10. For the system (2.1) with the fusion LS algorithm (3.1)--(3.4) and
the adaptive tracking law (3.20), if Assumptions 2.1 and 3.1 hold, then the equilibrium
\~xi(t) = 0, \~\Theta (t) = 0 is globally stable. Furthermore,

lim
k\rightarrow \infty 

\~xi = 0 \forall i = 1, . . . ,m,

which implies that asymptotic tracking is achieved.

Proof. Noting si =
\sum 

j\in \scrN i
aij(zj,n  - zi,n)  - bi(zi,n  - z0,n) and

\sum m
j=1 a

(d)
ij = 1,
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substituting (3.20) into (3.18) yields

\.zi,n =ui + fi + gTi \theta  - \.\alpha i,n

= si + \^\rho i sign(si) - fi(xi) + \.\alpha i,n  - gTi
\^\theta i(t) + fi(xi) + gTi \theta  - \.\alpha i,n

= gTi
\~\theta i(t) +

\sum 
j\in \scrN i

aij(zj,n  - zi,n) - bi(zi,n  - z0,n) + \^\rho i sign(si).

Then, we have

\.z\ast n =  - (B + \scrL )z\ast n +B1z0,n + \Lambda +GT \~\Theta ,(3.21)

where z\ast n = [z1,n, . . . , zm,n]
T and 1 = [1, 1, . . . , 1]T \in \BbbR m.

By e\ast n = z\ast n  - 1z0,n, \scrL 1 = \vec{}0 \in \BbbR m, and (3.21), we get

\.e\ast n = \.z\ast n  - 1 \.z0,n =  - (B + \scrL )z\ast n + (B + \scrL )1z0,n + \Lambda +GT \~\Theta  - 1 \.z0,n

=  - (B + \scrL )e\ast n  - 1 \.z0,n + \Lambda +GT \~\Theta .(3.22)

From Assumption 3.1 and Lemma A.3, we learn that B + \scrL is positive definite.
We choose the Lyapunov function as

Vz =
1

2
eT\ast n(B + \scrL )e\ast n +

1

2

m\sum 
i=1

\beta  - 1
i (\^\rho i  - \rho i)

2.

Note that

eT\ast n(B + \scrL ) = zT\ast n(B + \scrL ) - z0,n1
TB = zT\ast n\scrL  - (z0,n1 - z\ast n)

TB

= - (s1, . . . , sm) ,

 - eT\ast n(B + \scrL )1 \.z0,n =(s1, . . . , sm) \cdot 

\left(   \.z0,n
...

\.z0,n

\right)   \leq 
m\sum 
i=1

| si| | \.z0,n| ,

eT\ast n(B + \scrL )\Lambda = - (s1, . . . , sm) \cdot 

\left(   \^\rho 1 sign(s1)
...

\^\rho m sign(sm)

\right)   =  - 
m\sum 
i=1

\^\rho i| si| .

Then, by (3.22), \.\^\rho i = \beta i| si| , and \rho i > | \.z0n| , we get

\.Vz = eT\ast n(B + \scrL ) \.e\ast n +

m\sum 
i=1

\beta  - 1
i (\^\rho i  - \rho i) \.\^\rho i

= - eT\ast n(B + \scrL )2e\ast n  - eT\ast n(B + \scrL )1 \.z0,n + eT\ast n(B + \scrL )\Lambda 

+ eT\ast n(B + \scrL )GT \~\Theta +

m\sum 
i=1

\beta  - 1
i (\^\rho i  - \rho i) \cdot \beta i| si| 

\leq  - eT\ast n(B + \scrL )2e\ast n + eT\ast n(B + \scrL )GT \~\Theta 

 - 
m\sum 
i=1

| si| (\^\rho i  - | \.z0,n| ) +
m\sum 
i=1

| si| (\^\rho i  - \rho i)

\leq  - eT\ast n(B + \scrL )2e\ast n + eT\ast n(B + \scrL )GT \~\Theta  - 
m\sum 
i=1

| si| (\rho i  - | \.z0,n| )

\leq  - eT\ast n(B + \scrL )2e\ast n + eT\ast n(B + \scrL )GT \~\Theta .(3.23)
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3158 YING WANG, WUQUAN LI, AND JI-FENG ZHANG

Combining Lemma 8.1.2 in [13] with Assumption 3.1 yields 0 < a
(d)
ij < 1 for all

d \geq D(\scrG ). Then, we have

amin \triangleq min
1\leq i,j\leq m

\Bigl\{ 
a
(d)
ij

\Bigr\} 
> 0.(3.24)

Substituting (3.24) into \Psi gives

\Psi =diag

\left\{   
m\sum 
j=1

a
(d)
1j gjg

T
j , . . . ,

m\sum 
j=1

a
(d)
mjgjg

T
j

\right\}   \geq amin diag

\left\{   
m\sum 
j=1

gjg
T
j , . . . ,

m\sum 
j=1

gjg
T
j

\right\}   .

Thus,

1

amin
\Psi  - GGT \geq 0.(3.25)

From Assumption 3.1 and Lemma A.3, it can be seen that

\gamma 1 \triangleq \lambda min

\bigl( 
(B + \scrL )2

\bigr) 
> 0.(3.26)

Let V = 1
amin

V\~\Theta + Vz. From (3.13), (3.23), (3.25), and (3.26) we get

\.V \leq  - 1

amin

\~\Theta T\Psi \~\Theta  - eT\ast n(B + \scrL )2e\ast n + eT\ast n(B + \scrL )GT \~\Theta 

\leq  - 1

2amin

\~\Theta T\Psi \~\Theta  - 1

2
eT\ast n(B + \scrL )2e\ast n  - 1

2
\~\Theta T

\biggl( 
1

amin
\Psi  - GGT

\biggr) 
\~\Theta 

 - 1

2
[(B + \scrL )e\ast n  - GT \~\Theta ]T [(B + \scrL )e\ast n  - GT \~\Theta ]

\leq  - 1

2amin

\~\Theta T\Psi \~\Theta  - 1

2
eT\ast n(B + \scrL )2e\ast n \leq  - 1

2
\gamma 1e

T
\ast ne\ast n \leq 0.

This establishes the global stability.
By \.V \leq 0, we know V (t) \leq V (0). This gives that V (t) is bounded, so e\ast n

is bounded and square integrable. By Assumption 3.1 and (3.14), x0 is bounded.
Similar to (C.3) in Appendix C, by (3.16)--(3.17) and induction we can obtain \.\alpha 0,j

and z0 is bounded. Hence z\ast n is bounded from z\ast n = e\ast n+1z0,n, implying that zi,n is
bounded for all i = 1, . . . ,m. Then, by si =

\sum 
j\in \scrN i

aij(zj,n - zi,n)+ bi(z0,n - zi,n), we
obtain that si is bounded. By (3.19) and the boundedness of \.\alpha 0,n, \.z0,n is bounded.
Moreover, \rho i is bounded, so \Lambda is bounded.

Next, we show that G is bounded, i.e., gi(xi) is bounded for all i = 1, . . . ,m. At
first, we obtain that ei,n = zi,n  - z0,n is bounded since e\ast n is bounded. Then, from
(C.2) in Appendix C we get Vi =

1
2 (e

2
i,1+e2i,2+ \cdot \cdot \cdot +e2i,n - 1) is bounded, which implies

ei,j is bounded. Hence zi,j is bounded. By (3.16)--(3.17) and induction, we obtain that
xi,j is bounded, which implies xi is bounded. Noting that gi(xi) is locally Lipschitz
on \BbbR n, we conclude that gi(xi) is bounded for all i = 1, . . . ,m. This completes that
the proof that G is bounded.

By Lemma 3.6, we obtain that \~\Theta is bounded. Based on the above arguments and
(3.22), we get that \.e\ast n is bounded. By the Barbalat lemma we get limt\rightarrow \infty e\ast n = 0,
which shows that limt\rightarrow \infty zi,n = z0,n for all i = 1, . . . ,m. Finally, from Lemma 3.8
we have limt\rightarrow \infty xi = x0 for all i = 1, . . . ,m.

This completes the proof.
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Next, the following theorem describes the convergence properties of the fusion LS
algorithm (3.1)--(3.4).

Theorem 3.11. If Assumptions 2.1 and 3.1 hold, then the estimate given by the
fusion LS algorithm (3.1)--(3.4) has the convergence property with the adaptive tracking
law (3.20). Specifically, \^\Theta (t) converges to a constant vector. Furthermore, we have\bigm\| \bigm\| \bigm\| \~\Theta (t)

\bigm\| \bigm\| \bigm\| 2 = O

\Biggl( 
1

\lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) \Biggr) ,

and limt\rightarrow +\infty \^\Theta (t) = \Theta on \BbbS =
\bigl\{ 
limt\rightarrow +\infty \lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) 
= \infty 

\bigr\} 
, where O is the as-

ymptotic notation.

Proof. From (3.5) and \Gamma i(0) > 0, we have \Gamma  - 1
d,i (0) =

\sum m
j=1 a

(d)
ij \Gamma 

 - 1

j (0) > 0, im-

plying \Gamma d(0) \triangleq diag \{ \Gamma d,1(0), . . . ,\Gamma d,m(0)\} > 0. Then, from (3.7) and (3.10) we get

\.\Gamma d =  - \Gamma d\Psi \Gamma d,\Gamma d(0) = \Gamma T
d (0) > 0, and \.\~\Theta =  - \Gamma d\Psi \~\Theta , which implies

\~\Theta (t) = \~\Theta (0) - 
\int t

0

\Gamma d\Psi \~\Theta ds,(3.27)

and
\int t

0
\Gamma d\Psi \Gamma dds = \Gamma d(0)  - \Gamma d(t) \leq \Gamma d(0). From \Gamma d > 0, \Psi \geq 0, and Theorem 1.1.6

in [14], we have \Gamma d\Psi \Gamma d \geq 0, implying Tr\{ \Gamma d\Psi \Gamma d\} \geq \| \Gamma d\Psi \Gamma d\| . Then, we get\int t

0

\| \Gamma d\Psi \Gamma d\| ds \leq 
\int t

0

Tr \{ \Gamma d\Psi \Gamma d\} ds \leq Tr \{ \Gamma d(0)\} .(3.28)

Next, we will prove
\int t

0
\Gamma d\Psi \~\Theta ds < \infty . By (3.13) and V\~\Theta (t) \leq V\~\Theta (0),

\int t

0
\~\Theta T\Psi \~\Theta ds \leq 

V\~\Theta (0) - V\~\Theta (t) \leq V\~\Theta (0) is achieved, which, together with (3.28) and Schwarz inequality,
gives\bigm\| \bigm\| \bigm\| \bigm\| \int \infty 

0

\Gamma d\Psi \~\Theta ds

\bigm\| \bigm\| \bigm\| \bigm\| \leq 
\int \infty 

0

\bigm\| \bigm\| \bigm\| \Gamma d\Psi \~\Theta 
\bigm\| \bigm\| \bigm\| ds \leq \biggl( \int \infty 

0

\bigm\| \bigm\| \bigm\| \Gamma d\Psi 
1
2

\bigm\| \bigm\| \bigm\| 2 ds\biggr) 1
2
\biggl( \int \infty 

0

\bigm\| \bigm\| \bigm\| \Psi 1
2 \~\Theta 
\bigm\| \bigm\| \bigm\| 2 ds\biggr) 1

2

=

\biggl( \int \infty 

0

\| \Gamma d\Psi \Gamma d\| ds
\biggr) 1

2
\biggl( \int \infty 

0

\~\Theta T\Psi \~\Theta ds

\biggr) 1
2

\leq V\~\Theta (0) \cdot Tr\{ \Gamma d(0)\} < \infty .

Thus, by (3.27), there exists a constant vector \Theta 0 such that limt\rightarrow \infty \^\Theta (t) = \Theta 0. By

(3.12) we obtain that \Gamma d(t) is positive semidefinite and
\bigm\| \bigm\| \Gamma 1

2

d (t)
\bigm\| \bigm\| 2 = \| \Gamma d(t)\| . From

(3.13) we have V\~\Theta (t) = \~\Theta T\Gamma  - 1
d

\~\Theta \leq V\~\Theta (0), implying that supt\geq 0

\bigm\| \bigm\| \Gamma  - 1
2

d
\~\Theta 
\bigm\| \bigm\| 2 < \infty .

Hence,
\bigm\| \bigm\| \~\Theta (t)

\bigm\| \bigm\| 2 \leq \| \Gamma d(t)\| 
\bigm\| \bigm\| \Gamma  - 1

2

d
\~\Theta 
\bigm\| \bigm\| 2 = O (\| \Gamma d(t)\| ) = O

\bigl( 
1

\lambda min(\Gamma  - 1
d (t))

\bigr) 
.

This completes the proof of this theorem.

From Theorem 3.11, we learn that the estimate given by (3.1)--(3.4) converges to
the true parameter if \lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) 
\rightarrow \infty . Thus, the system nonlinear function gi is an

important factor that affects the algorithm performance. the algorithm performance.
Next, we explore the relationship between the system nonlinear function gi and the
convergence of parameter estimation. To proceed, we need the following assumption.

Assumption 3.12 (cooperative PE condition). For the bounded signal gi \in \BbbR p

(i = 1, . . . ,m), there exist two positive constants T and \delta such that\int t+T

t

m\sum 
i=1

gi(\tau )g
T
i (\tau )d\tau \geq \delta Ip \forall t \geq 0.(3.29)
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Remark 3.13. In the traditional single-agent case (where m = 1), the cooperative
PE condition could reduce to the well-known PE condition in [18].

PE condition: the bounded signal g(t) \in \BbbR p is of PE if there exist two positive
constants T and \alpha such that\int t+T

t

g(\tau )gT (\tau )d\tau \geq \alpha Ip \forall t \geq 0.(3.30)

Comparing (3.29) with (3.30), it can be seen that the cooperative PE condition could
be satisfied if each agent follows the PE condition. Meanwhile, the cooperative PE
condition could be satisfied even if each agent does not meet the PE condition. A
simple example is given to show it. For m = 2, let g1 = [1, 0]T and g2 = [0, 1]T .
It is not difficult to verify that neither g1 nor g2 can satisfy the PE condition, but
they can cooperate to satisfy the cooperative PE condition. The comparison between
the above two conditions also reflects indirectly that the distributed algorithm can
make up for the deficiencies of individual performance through information exchange
between individuals to some extent.

Theorem 3.14. With the adaptive tracking law (3.20), if Assumptions 2.1, 3.1,
and 3.12 hold, then the estimate given by the fusion LS algorithm (3.1)--(3.4) has the

following property: limt\rightarrow +\infty \^\theta i(t) = \theta for all i = 1, . . . ,m.

Proof. Actually, we just need to prove limt\rightarrow +\infty \lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) 
= \infty according to

the conclusion of Theorem 3.11.
From (3.11) we get \.\Gamma  - 1

d = \Psi \triangleq diag
\bigl\{ \sum m

j=1 a
(d)
1j gjg

T
j , . . . ,

\sum m
j=1 a

(d)
mjgjg

T
j

\bigr\} 
, which

implies

\Gamma  - 1
d (t) = \Gamma  - 1

d (0) +

\int t

0

\Psi (\tau )d\tau .(3.31)

Let \lfloor x\rfloor = max\{ a \in \BbbZ | a \leq x\} for x \in \BbbR . Then, by Assumption 3.12 and (3.24) we get\int t

0
\Psi (\tau )d\tau \geq 

\sum \lfloor t
T \rfloor 

l=1

\int lT

(l - 1)T
\Psi (\tau )d\tau \geq 

\sum \lfloor t
T \rfloor 

l=1 amin

\int lT

(l - 1)T
Im \otimes 

\sum m
j=1 gj(\tau )g

T
j (\tau )d\tau \geq 

amin\delta 
\bigl\lfloor 

t
T

\bigr\rfloor 
Imp. This, together with (3.31) and \Gamma  - 1

d (0) > 0, leads to

\lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) 
\geq amin\delta 

\biggl\lfloor 
t

T

\biggr\rfloor 
.(3.32)

Thus, we have limt\rightarrow +\infty \lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) 
= \infty . This completes the proof.

Remark 3.15. It should be emphasized that the fusion LS algorithm (3.1)--(3.4)
is not a simple superposition of individual estimation algorithms. This distributed
algorithm states that each agent could finish the estimation task through information
exchange among agents even if any individual cannot due to lacking suitable excita-
tion. Moreover, this distributed algorithm has fewer requirements on the performance
of each system, and the results can be applied to a wider range. Furthermore, the
distributed algorithm could broaden the convergence condition from PE condition
to cooperative PE condition, which is the reason that the d times fusion has been
introduced in the fusion LS algorithm.

Remark 3.16. It is worth noticing that the adaptive tracking control law (3.20)
can still achieve the asymptotic tracking when the fusion times of the fusion LS algo-
rithm is d = 1 and each agent has a self-loop in the connected topology. Meanwhile,
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the fusion LS algorithm with d = 1 is able to estimate accurately the unknown pa-
rameter only if

min
1\leq i\leq m

\left\{   \lambda min

\left(  \sum 
j\in \scrN i

aij

\int t+T

t

gjg
T
j d\tau 

\right)  \right\}   > 0.(3.33)

In this section, we analyze the properties of the fusion LS algorithm and the effect
of the adaptive tracking law under fixed topology. However, in most real communica-
tion processes, the communication links among the agents often change in time. For
example, in the flocking and vehicle formation control, the communication topology
depends on the environment of the flocking and the relative positions of the vehicles,
which are usually changing over time. Thus, it will be interesting to consider the
adaptive asymptotic tracking problem under the switching topology.

4. The switching topology. In this section, the adaptive consensus tracking
control problem is studied for strict-feedback nonlinear multiagent systems with pa-
rameter uncertainty under the switching topology.

At first, we illustrate some notation for the switching topology. Let \sigma (t) : [0,\infty ) \rightarrow 
\frakL \scrT represent a switching signal that determines the communication topology. \scrT is
a set of graphs with a common vertex set \scrV . Because a graph with vertex set \scrV 
has m(m+1)

2 edges at most, the set \scrT is finite and is denoted as \scrT = \{ \scrG 1, . . . ,\scrG N\} ,
where N represents the total number of graphs in \scrT and \frakL \scrT = \{ 1, 2, . . . , N\} . Define
switching topology as \scrG \sigma (t) =

\bigl( 
\scrV , \scrE \sigma (t),\scrA \sigma (t)

\bigr) 
, where \scrA \sigma (t) = \{ aij(t)\} . Then, we have

\scrG \sigma (t) \in \scrT = \{ \scrG 1, . . . ,\scrG N\} . Let \scrN i (t) be the neighbors set of the agent i at time t,
and B\sigma (t) = diag\{ b1(t), . . . , bm(t)\} , where bi(t) = 1 represents that agent i can obtain
the information of reference signal yr(t) at time t, otherwise b(t) = 0. Then, we
obtain that B\sigma (t) \in \{ B1, . . . , BL\} , where L is finite and represents the total number
of matrices Bj . In addition, let Dmax = max \{ D(\scrG 1), . . . , D(\scrG N )\} , where D(\scrG j) is the
diameter of the graph \scrG j \in \scrT .

To facilitate analysis, the following assumption of the switching topology is pre-
sented.

Assumption 4.1. Graph \scrG \sigma (t) is connected, and the information of the reference
signal yr(t) is available to at least one of the m agents at time t.

Remark 4.2. More specifically, \scrG \sigma (t) is connected, meaning \scrG j is connected for all
j \in \frakL \scrT . And the reference signal yr(t) is available to at least one of the m agents at
time t, implying there always exists j \in \{ 1, . . . ,m\} making bj(t) > 0 at time t.

4.1. Identification and control law. Due to the effect of the switching topol-
ogy, the estimation algorithm and adaptive tracking law designed in section 3 are
invalid in this section, which needs to be recomposed.

We redesign the fusion LS algorithm as follows.
First, the estimate of each agent is the same as (3.1) because this step is inde-

pendent of the topology structure.
Second, the fusion item is redesigned as follows:
(1) For each i \in \{ 1, . . . ,m\} , set the initial value at time t as

\Gamma 0,i(t) = \Gamma i(t), \xi 0,i(t) = \Gamma 
 - 1

i (t)\=\theta i(t),(4.1)

where \Gamma i(t) and \=\theta i(t) are given in (3.1).

D
ow

nl
oa

de
d 

10
/1

3/
22

 to
 1

24
.1

6.
14

8.
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3162 YING WANG, WUQUAN LI, AND JI-FENG ZHANG

(2) Perform the following diffusion process for l = 1, 2, . . . , d (d \geq Dmax),

\Gamma  - 1
l,i (t) =

\sum 
j\in \scrN i(t)

aij (t) \Gamma 
 - 1
l - 1,i(t), \xi l,i(t) =

\sum 
j\in \scrN i(t)

aij (t) \xi l - 1,j(t).(4.2)

(3) For each agent i, update the estimate \^\theta i(t) as

\^\theta i(t) = \Gamma d,i(t)\xi d,i(t).(4.3)

Then, we redesign the adaptive tracking law (3.20) as\biggl\{ 
ui(t) = si(t) + \^\rho i sign(si(t)) - fi(xi) + \.\alpha i,n(t) - gTi

\^\theta i(t),
\.\^\rho i(t) = \beta i| si(t)| 

(4.4)

for all i = 1, . . . ,m, where

si(t) =
\sum 

j\in \scrN i(t)

aij (t) (zj,n  - zi,n) + bi (t) (z0,n  - zi,n).(4.5)

For convenience, let \Psi \sigma (t) = diag
\bigl\{ \sum m

j=1 a
(d)
1j (t) gjg

T
j , . . . ,

\sum m
j=1 a

(d)
mj (t) gjg

T
j

\bigr\} 
,

A d
\sigma (t) = \scrA d

\sigma (t) \otimes Ip with

\scrA d
\sigma (t) \triangleq 

\Bigl\{ 
a
(d)
ij (t)

\Bigr\} 
m\times m

= \scrA \sigma (t) \cdot \scrA \sigma (t) \cdot \cdot \cdot \cdot \cdot \scrA \sigma (t)\underbrace{}  \underbrace{}  
d

,

and B\sigma (t) = diag \{ b1 (t) , . . . , bm (t)\} . Similar to (3.5)--(3.7), from (4.1)--(4.3) we have

\Gamma  - 1
d,i (t) =

\sum m
j=1 a

(d)
ij (t) \Gamma 

 - 1

j (t) and \^\theta i(t) = \Gamma d,i(t)
\sum m

j=1 a
(d)
ij (t) \=\Gamma  - 1

j (t)\=\theta j(t). From

(3.18), (4.5), and
\sum m

j=1 a
(d)
ij (t) = 1, we obtain

\.zi,n =ui + fi + gTi \theta  - \.\alpha i,n = si + \^\rho i sign(si) - gTi
\^\theta i(t) + gTi \theta 

= gTi
\~\theta i +

\sum 
j\in \scrN i(t)

aij (t) (zj,n  - zi,n) - bi (t) (zi,n  - z0,n) + \^\rho i sign(si).

Denote z\ast n = [z1,n, . . . , zm,n]
T ; we have

\.z\ast n =  - 
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
z\ast n +B\sigma (t)1z0n + \Lambda +GT \~\Theta ,(4.6)

where \scrL \sigma (t) = I  - \scrA \sigma (t) is the Laplacian matrix of the switching graph \scrG \sigma (t).

4.2. Main results. Based on Lemma A.3 and the fact that N and L are finite,
under Assumption 4.1 we have

\lambda min

\bigl\{ 
\scrL \sigma (t) +B\sigma (t)

\bigr\} 
\geq \mu \ast \triangleq min

1\leq i\leq N,1\leq j\leq L
\lambda min \{ \scrL i +Bj\} > 0,(4.7)

where \scrL i is the Laplacian matrix of Graph \scrG i \in \{ \scrG 1, . . . ,\scrG N\} and Bj \in \{ B1, . . . , BL\} .
The main results of this section are stated as follows.

Theorem 4.3. For the system (2.1) with the fusion LS algorithm (3.1), (4.1)--
(4.3), and the adaptive tracking law (4.4)--(4.5), if Assumptions 2.1 and 4.1 hold, then
the following conclusions hold.
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(1) Let the maximal existence interval of solutions about the system (2.1) be [0, tf ).
Then, with any \alpha i(0) \in \BbbR p and any positive definite matrix \Gamma i(0) \in \BbbR p\times p for i \in 
\{ 1, . . . ,m\} , the functions ( \^\Theta (t),\Gamma d(t)) generated by (3.1), (4.1)--(4.3) are bounded.

(2) The equilibrium \~xi = 0, \~\Theta = 0 is globally stable. Furthermore,

lim
k\rightarrow \infty 

\~xi = 0 \forall i = 1, . . . ,m,

which implies that the asymptotic tracking is achieved.
(3) The estimate generated by (3.1), (4.1)--(4.3) has a convergence property, i.e.,

\^\Theta (t) converges to a constant vector \Theta 0. Besides,\bigm\| \bigm\| \bigm\| \~\Theta (t)
\bigm\| \bigm\| \bigm\| 2 = O

\Biggl( 
1

\lambda min

\bigl( 
\Gamma  - 1
d (t)

\bigr) \Biggr) .

Furthermore, if Assumption 3.12 holds, then the estimate converges to its true pa-
rameter,

lim
t\rightarrow +\infty 

\^\theta i(t) = \theta \forall i = 1, . . . ,m.

Proof. Conclusions (1) and (3) can be proved similarly to those in Lemma 3.6,
Theorem 3.10, and Theorem 3.14 in section 3, so the detailed proofs are omitted.

Next, we will prove conclusion (2).
Let e\ast n(t) = z\ast n(t) - 1z0,n(t). Then, by (4.6) and \scrL \sigma (t)1 = \vec{}0 \in \BbbR m we get

\.e\ast n(t) = \.z\ast n(t) - 1 \.z0,n(t) +
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
1z0,n + \Lambda +GT \~\Theta  - 1 \.z0,n

=  - 
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
e\ast n(t) - 1 \.z0,n(t) + \Lambda +GT \~\Theta .(4.8)

From (4.7), we obtain that \scrL \sigma (t)+B\sigma (t) is positive definite. We choose the Lyapunov
function as

Vz(t) =
1

2
eT\ast n(t)

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
e\ast n(t) +

1

2

m\sum 
i=1

\beta  - 1
i (\^\rho i(t) - \rho i)

2.

Noting that

 - eT\ast n(\scrL \sigma (t) +B\sigma (t))1 \.z0,n = (s1, . . . , sm) \cdot 

\left(   \.z0,n
...

\.z0,n

\right)   \leq 
m\sum 
i=1

| si| | \.z0,n| ,

eT\ast n(\scrL \sigma (t) +B\sigma (t))\Lambda =  - (s1, . . . , sm) \cdot 

\left(   \^\rho 1 sign(s1)
...

\^\rho m sign(sm)

\right)   =  - 
m\sum 
i=1

\^\rho i| si| ,

from (4.4), (4.6), and \rho i > | \.z0,n| we have

\.Vz(t) = eT\ast n
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
\.e\ast n +

m\sum 
i=1

\beta  - 1
i (\^\rho i  - \rho i) \.\^\rho i

= - eT\ast n(t)
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n(t) - eT\ast n(t)

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
1 \.z0,n(t)

+ eT\ast n(t)
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
\Lambda + eT\ast n(t)

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
GT \~\Theta 

+

m\sum 
i=1

\beta  - 1
i (\^\rho i  - \rho i)\beta i| si(t)| 

\leq  - eT\ast n(t)
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n(t) + eT\ast n(t)

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
GT \~\Theta 
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 - 
m\sum 
i=1

| si(t)| (\^\rho i(t) - | \.z0,n(t)| ) +
m\sum 
i=1

| si(t)| (\^\rho i(t) - \rho i)

\leq  - eT\ast n(t)
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n(t) + eT\ast n(t)

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
GT \~\Theta 

 - 
m\sum 
i=1

| si(t)| (\rho i  - | \.z0,n(t)| )

\leq  - eT\ast n(t)
\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n(t) + eT\ast n(t)

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
GT \~\Theta .(4.9)

Let V\~\Theta (t) =
\~\Theta T (t)\Gamma  - 1

d (t) \~\Theta (t). Similar to the proof of Lemma 3.6, we can get \.V\~\Theta (t) =

 - \~\Theta (t)T\Psi \sigma (t)
\~\Theta (t) \leq 0. Noticing Lemma 8.1.2 in [13] and Assumption 4.1, we get

0 < a
(d)
ij (t) < 1 for all d \geq Dmax. Let a

\sigma (t)
min = min1\leq i,j\leq m

\bigl\{ 
a
(d)
ij (t)

\bigr\} 
. Then, we have

a
\sigma (t)
min > 0, which implies 1

a
\sigma (t)
min

\Psi \sigma (t)  - GGT > 0. Choosing V (t) = 1

a
\sigma (t)
min

V\~\Theta (t) + Vz(t),

from \Psi \sigma (t) \geq 0 and (4.7) we get

\.V \leq  - 1

a
\sigma (t)
min

\~\Theta T\Psi \sigma (t)
\~\Theta  - eT\ast n

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n + eT\ast n

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
GT \~\Theta 

\leq  - 1

2a
\sigma (t)
min

\~\Theta T\Psi \sigma (t)
\~\Theta  - 1

2
eT\ast n

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n

 - 1

2

\Bigl[ \bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
e\ast n  - GT \~\Theta 

\Bigr] T \Bigl[ \bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 
e\ast n  - GT \~\Theta 

\Bigr] 
 - 1

2
\~\Theta T

\Biggl( 
1

a
\sigma (t)
min

\Psi \sigma (t)  - GGT

\Biggr) 
\~\Theta 

\leq  - 1

2a
\sigma (t)
min

\~\Theta T\Psi \sigma (t)
\~\Theta  - 1

2
eT\ast n

\bigl( 
\scrL \sigma (t) +B\sigma (t)

\bigr) 2
e\ast n

\leq  - 1

2
\mu \ast eT\ast ne\ast n \leq 0,

from which the global stability is established.
By \.V \leq 0, we know V (t) \leq V (0), which means V (t) is bounded, so e\ast n(t) is

bounded and square integrable. Similar to the proof of Theorem 3.10, we get that
z0, z\ast n, \.\alpha 0,n, \.z0,n, and G are bounded. So, by si =

\sum 
j\in \scrN i(t)

aij(t)(zj,n  - zi,n) +

bi(t)(z0,n  - zi,n), we conclude that si is bounded for all i = 1, . . . ,m, which implies \Lambda 
is bounded.

From conclusion (1), we obtain that \~\Theta is bounded, which together with (4.7)
implies that \.e\ast n(t) is bounded. By the Barbalat lemma,

lim
t\rightarrow \infty 

e\ast n(t) = 0.

In other words, we get limt\rightarrow \infty zi,n(t) = z0,n(t) for all i = 1, . . . ,m. Finally, by
Lemma 3.8, the conclusion (2) is proved.

5. Simulation examples. In this section, we give two simulation examples,
containing the adaptive consensus tracking control of single-link robot arms, to show
the effectiveness of the fusion LS algorithm and the adaptive tracking law developed
under both fixed and switching topologies, respectively.

Example 5.1. The network topology is composed of m = 20 agents whose dy-
namics obey (2.1) with n = 4 and p = 5, where the unknown parameter is \theta =
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[3, - 1.5, 2, 0, - 1]T , the nonlinear functions of agent i (i = 1, . . . , 20) are

gi(xi) =

\left\{                 

[xi1 + 3, 0, 0, 0, 0]T if mod(i, 5) = 1;

[0, xi2 + 3, 0, 0, 0]T if mod(i, 5) = 2;

[0, 0, xi3 + 3, 0, 0]T if mod(i, 5) = 3;

[0, 0, 0, xi4 + 3, 0]T if mod(i, 5) = 4;

[0, 0, 0, 0, xi1 + 3]T if mod(i, 5) = 0

and

fi(xi) =

\biggl\{ 
x2
i,1 + x2

i,3 if mod(i, 2) = 1;
x2
i,2 + x2

i,4 if mod(i, 2) = 0,

where mod(p, q) = r is that the remainder of p divided by q is r for positive integers
r, p, and q. Besides, set the reference signal as yr = sin t.

The network topology is shown in Figure 1 (a). Here we use the Metropolis rule
in [33] to construct the weights, i.e.,

aij =

\biggl\{ 
1 - 

\sum 
l \not =i ail if j = i;

1/(max\{ ni, nj\} ) if j \in \scrN i/\{ i\} ,
(5.1)

where ni is the degree of the node i, i.e., the number of its neighbors. Besides, only
the 2nd and 15th agents can obtain the information of the reference signal yr.

(a) (b)

Fig. 1. The network topologies.

It is not difficult to verify that none of nonlinear items gi (i = 1, . . . ,m) of
20 agents can satisfy the PE condition (3.30), but they can cooperate to satisfy
the cooperative PE condition (3.29). We carry out the simulation with the control
parameters k1 = k2 = k3 = 1 and the same initial values.

Figure 2 (a) gives the responses of the fusion LS algorithm, and Figure 2 (b) gives
the responses of the noncooperative LS algorithm (i.e., the algorithm (3.1)). It can
be seen that the square error (SE) of each agent cannot converge to zero when using
the noncooperative LS algorithm to estimate \theta . However, the SE of each agent can
converge to zero with the fusion LS algorithm, which means that the estimation task
can be still fulfilled through exchanging the information between agents even though
any individual agent cannot. Besides, Figure 3 gives the responses of all agents' states,
which shows that all agents can track asymptotically the reference trajectory.
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(a) SE of Fusion LS algorithm
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(b) SE of LS algorithm

Fig. 2. The comparison of cooperative and noncooperative algorithms.

Fig. 3. The responses of all agents'.

Example 5.2. The network topology is composed of m = 20 agents. Each agent
is a single-link robot arm as shown in Figure 4, which consists of a rigid link coupled
through a gear train to a dc motor. The dynamic of the single-link robot arm is
described as [28]

J \"qi +B\"qi +Mg0l sin (qi) = ui, i = 1, . . . , 20,(5.2)

where the state qi is the angle of the link, J is the total rotational inertias of the
link and the motor, B is the overall damping coefficient, M is the total mass of the
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 !

"!

#$%

Fig. 4. Single-link robot arm of the agent i.

link, g0 is the gravitational acceleration, and l is the distance from the joint axis
to the link center of mass. In this example, J = 1, M = 0.35, g0 = 9.8, and the
follower dynamical coefficients B and l are assumed to be unknown. To obtain a state
model for the single-link robot arm, denote \theta = [B, l]T and take the state variables as
xi,1 = qi and xi,2 = \.qi. Then, from (5.2) we get the state-space form as\Biggl\{ 

\.xi,1 = xi,2,

\.xi,2 = ui  - [xi,2, 3.43 sin (xi,1)] \cdot \theta ,
i = 1, . . . , 20.(5.3)

In addition, set the reference signal as yr = sin t.
The switching network topologies are shown in Figure 1, where Figure 1 (a) is used

in t \in [2k, 2k + 1] and Figure 1 (b) is used in t \in [2k + 1, 2k + 2] for k = 0, 1, 2, . . . .
Similarly, here we also use the Metropolis rule in (5.1) to construct the weights.
Besides, only the 2nd and 15th agents are able to obtain the information of the
reference signal when t \in [2k, 2k + 1] and the 4th, 10th, and 16th agents can obtain
the information when t \in [2k + 1, 2k + 2] for k = 0, 1, 2, . . . .

(a) (b)

Fig. 5. The responses of all agents' states.

We proceed with the simulation by use of the fusion LS algorithm (3.1), (4.1)--
(4.3) with d = 1 and the adaptive consensus tracking control law (4.4) with the
control parameters k1 = 2, \beta = 1, and the same initial values. Then, Figure 5 gives
the responses of all agents' states and Figure 6 gives the responses of the fusion LS
algorithm and the noncooperative LS algorithm (i.e., the algorithm (3.1)). From Fig-
ure 5, we learn that each agent is able to asymptotically track the reference trajectory
under the switching topology, which confirms Remark 3.15 to some extent. Besides,
Figure 6 shows that both the fusion LS algorithm and LS algorithm can estimate the
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(a) SE of Fusion LS algorithm (b) SE of LS algorithm

Fig. 6. The responses of the cooperative and noncooperative algorithms.

true parameter even if the fusion LS algorithm only fuses once. It is because all of
the nonlinear items gi of 20 agents can satisfy the PE condition (3.30) and (3.33) in
Remark 3.15.

6. Conclusions. In this paper, we have solved the adaptive consensus tracking
control problems for strict-feedback nonlinear systems with parameter uncertainty
based on the distributed LS algorithm under both fixed and switching topologies.
Under the fixed connected topology, we propose a novel fusion LS algorithm with-
out regressor filtering. With such an estimation algorithm, a new adaptive consensus
tracking control law is presented based on the backstepping techniques. The adap-
tive tracking law guarantees the asymptotic tracking ability of each agent. Moreover,
the estimate given by the proposed algorithm is convergent to a constant vector. In
addition, we show the estimate converges to its true parameter if system nonlinear
functions satisfy the cooperative PE condition. Furthermore, the corresponding re-
sults are generalized to the switching topology case.

For the LS-based adaptive control of nonlinear multiagent systems, many im-
portant issues are still open and worth investigating, such as the LS-based adaptive
control under communication limitations or under time-varying directed topologies,
the sampling adaptive control, the event-triggered adaptive control, and so on.

Appendix A. Useful tools. In this appendix, three lemmas are collected,
which are frequently used in the controller design and stability analysis.

Lemma A.1 (see [10]). For the system (3.18), if there is a bounded time-varying
function dj (j = 1, . . . , n) such that limt\rightarrow \infty (zi,j  - dj) = 0 for all i = 1, . . . ,m, then
there is a bounded time-varying function cj (j = 1, . . . , n) such that the original system
(2.1) is convergent, i.e., limt\rightarrow \infty (xi,j  - cj) = 0 for all i = 1, . . . ,m.

Lemma A.2 (see [10]). For the system (3.18), if there is a bounded time-varying
function dn such that limt\rightarrow \infty (zi,n  - dn) = 0, then there is a bounded time-varying
function dj (j = 1, . . . , n - 1) such that limt\rightarrow \infty (zi,j  - dj) = 0 for all i = 1, . . . ,m.

Lemma A.3 (see [15]). If the graph \scrG is connected, then \scrL +H has m positive real
eigenvalues, where \scrL is the Laplacian matrix of the graph \scrG , H = diag\{ h1, . . . , hm\} \geq 
0, and H \not = 0.
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Appendix B. Proof of Lemma 3.5. From (3.3) we can get\left(     
\Gamma  - 1
l,1 (t)

\Gamma  - 1
l,2 (t)
...

\Gamma  - 1
l,m(t)

\right)     =

\left(     
a11Ip a12Ip \cdot \cdot \cdot a1mIp
a21Ip a22Ip \cdot \cdot \cdot a2mIp
...

...
. . .

...
am1Ip am2Ip \cdot \cdot \cdot ammIp

\right)     \cdot 

\left(     
\Gamma  - 1
l - 1,1(t)

\Gamma  - 1
l - 1,2(t)

...
\Gamma  - 1
l - 1,m(t)

\right)     ,

\left(     
\xi l,1(t)
\xi l,2(t)

...
\xi l,m(t)

\right)     =

\left(     
a11Ip a12Ip \cdot \cdot \cdot a1mIp
a21Ip a22Ip \cdot \cdot \cdot a2mIp
...

...
. . .

...
am1Ip am2Ip \cdot \cdot \cdot ammIp

\right)     \cdot 

\left(     
\xi l - 1,1(t)
\xi l - 1,2(t)

...
\xi l - 1,m(t)

\right)     ,

which implies

vec
\bigl\{ 
\Gamma  - 1
l (t)

\bigr\} 
= A vec

\bigl\{ 
\Gamma  - 1
l - 1(t)

\bigr\} 
, \xi l(t) = A \xi l - 1(t),(B.1)

where vec\{ \cdot \} denotes the operator that stacks the blocks of a block diagonal matrix
on top of each other, A = \scrA \otimes In, \Gamma 

 - 1
l (t) = diag

\bigl\{ 
\Gamma  - 1
l,1 (t), . . . ,\Gamma 

 - 1
l,m(t)

\bigr\} 
, and \xi l(t) =

col \{ \xi l,1(t), . . . , \xi l,m(t)\} for l = 0, 1, . . . , d.
By (3.3) and (B.1) we have\left\{   vec

\bigl\{ 
\Gamma  - 1
d (t)

\bigr\} 
= A vec

\bigl\{ 
\Gamma  - 1
d - 1(t)

\bigr\} 
= \cdot \cdot \cdot = A d vec

\Bigl\{ 
\Gamma 
 - 1

(t)
\Bigr\} 
,

\xi d(t) = A \xi d - 1(t) = \cdot \cdot \cdot = A d\xi 0(t) = A d\Gamma 
 - 1 \=\Theta (t),

(B.2)

where the last equalities are obtained by the use of \Gamma  - 1
0 (t) = diag

\bigl\{ 
\Gamma 
 - 1

1 (t), . . . ,\Gamma 
 - 1

m (t)
\bigr\} 

and \xi 0(t) = col
\bigl\{ 
\Gamma 
 - 1

1 (t)\=\theta 1(t), . . . ,\Gamma 
 - 1

m (t)\=\theta m(t)
\bigr\} 
= \Gamma 

 - 1
(t) \=\Theta (t).

Then, from (3.4) we get\left(     
\^\theta 1(t)
\^\theta 2(t)
...

\^\theta m(t)

\right)     =

\left(     
\Gamma d,1(t) 0 \cdot \cdot \cdot 0

0 \Gamma d,2(t) \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot \Gamma d,m(t)

\right)     \cdot 

\left(     
\xi d,1(t)
\xi d,2(t)

...
\xi d,m(t)

\right)     ,

and by (B.2), \^\Theta (t) = \Gamma d(t)\xi d(t) = \Gamma d(t)A d\Gamma 
 - 1 \=\Theta (t). This, together with (B.2), yields\left(     

\^\theta 1(t)
\^\theta 2(t)
...

\^\theta m(t)

\right)     =

\left(     
\Gamma d,1(t) 0 \cdot \cdot \cdot 0

0 \Gamma d,2(t) \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot \Gamma d,m(t)

\right)     

\cdot 

\left(      
a
(d)
11 Ip a

(d)
12 Ip \cdot \cdot \cdot a

(d)
1mIp

a
(d)
21 Ip a

(d)
22 Ip \cdot \cdot \cdot a

(d)
2mIp

...
...

. . .
...

a
(d)
m1Ip a

(d)
m2Ip \cdot \cdot \cdot a

(d)
mmIp

\right)      \cdot 

\left(      
\Gamma 
 - 1

1 (t)\=\theta 1(t)

\Gamma 
 - 1

2 (t)\=\theta 2(t)
...

\Gamma 
 - 1

m (t)\=\theta m(t)

\right)      
and \left(     

\Gamma  - 1
d,1(t)

\Gamma  - 1
d,2(t)
...

\Gamma  - 1
d,m(t)

\right)     =

\left(      
a
(d)
11 Ip a

(d)
12 Ip \cdot \cdot \cdot a

(d)
1mIp

a
(d)
21 Ip a

(d)
22 Ip \cdot \cdot \cdot a

(d)
2mIp

...
...

. . .
...

a
(d)
m1Ip a

(d)
m2Ip \cdot \cdot \cdot a

(d)
mmIp

\right)      \cdot 

\left(      
\Gamma 
 - 1

1 (t)

\Gamma 
 - 1

2 (t)
...

\Gamma 
 - 1

m (t)

\right)      ,D
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Thus, we have \^\theta i(t) = \Gamma d,i(t)
\sum m

j=1 a
(d)
ij \Gamma 

 - 1

j (t)\=\theta j(t) and \Gamma  - 1
d,i (t) =

\sum m
j=1 a

(d)
ij \Gamma 

 - 1

j (t) for
all i = 1, . . . ,m, which implies that (3.5) and (3.6) hold.

From \Gamma \Gamma  - 1 = I, we have \.\Gamma  - 1 =  - \Gamma  - 1 \.\Gamma \Gamma  - 1 and \.\Gamma =  - \Gamma \.\Gamma  - 1\Gamma . Then, by (3.1)

and (3.5), we obtain that \.\Gamma 
 - 1

i (t) =  - \Gamma 
 - 1

i
\.\Gamma i(t)\Gamma 

 - 1

i =  - \Gamma 
 - 1

i \cdot ( - \Gamma igig
T
i \Gamma i) \cdot \Gamma 

 - 1

i = gig
T
i

and \.\Gamma  - 1
d,i =

\sum m
j=1 a

(d)
ij

\.\Gamma 
 - 1

j =
\sum m

j=1 a
(d)
ij gjg

T
j . Hence, we have

\.\Gamma d,i =  - \Gamma d,i
\.\Gamma  - 1
d,i\Gamma d,i =  - \Gamma d,i

m\sum 
j=1

a
(d)
ij gjg

T
j \Gamma d,i.

This completes the proof of Lemma 3.5.

Appendix C. Proof of Lemma 3.8. Define ei,j = zi,j  - z0,j for i = 1, . . . ,m
and j = 1, . . . , n. Then, from (3.17) we have

\left\{     
\.ei,1 =  - k1ei,1 + ei,2,

\.ei,j =  - kjei,j  - ei,j - 1 + ei,j+1, j = 2, . . . , n - 2,

\.ei,n - 1 =  - kn - 1ei,n - 1  - ei,n - 2 + ei,n.

(C.1)

Next, we will prove the system (C.1) is asymptotically stable subjected to the
disturbance ei,n.

Let Vi =
1
2 (e

2
i,1 + e2i,2 + \cdot \cdot \cdot + e2i,n - 1) for i = 1, . . . ,m. Then, we have

\.Vi(t) = ei,1 \.ei,1 + \cdot \cdot \cdot + ei,n - 1 \.ei,n - 1 =  - k1e
2
i,1  - \cdot \cdot \cdot  - kn - 1e

2
i,n - 1 + ei,n - 1ei,n

\leq  - k1e
2
i,1  - \cdot \cdot \cdot  - 1

2
kn - 1e

2
i,n - 1 +

1

2kn - 1
e2i,n \leq  - cVi(t) +

1

2kn - 1
e2i,n,

where c = min
\bigl\{ 
k1, . . . , kn - 2,

1
2kn - 1

\bigr\} 
> 0. Hence, we have

Vi(t) \leq Vi(0)e
 - ct +

1

2kn - 1

\int t

0

e - c(t - \tau )e2i,n(\tau )d\tau .(C.2)

Noting that limt\rightarrow \infty ei,n(t) = 0 implies limt\rightarrow \infty 
\int t

0
e - c(t - \tau )e2i,n(\tau )d\tau = 0, from (C.2)

we obtain that limt\rightarrow \infty Vi(t) = 0 holds if limt\rightarrow \infty ei,n(t) = 0 holds for i = 1, . . . ,m,
which shows that the above claim is true.

We note that ei,n = zi,n  - z0,n converges to zero, so limt\rightarrow \infty ei,j = 0 for all
i = 1, . . . ,m and j = 1, . . . , n - 1. Therefore, we have limt\rightarrow \infty zi,j = z0,j .

By (3.16) and (3.17), we get xi,1 = zi,1 \rightarrow z0,1 = x0,1 as t \rightarrow \infty .
Noting \alpha i,2 =  - k1zi,1 \rightarrow  - k1z0,1 = \alpha 0,2, we have xi,2 = zi,2+\alpha i,2 \rightarrow z0,2+\alpha 0,2 =

x0,2 as t \rightarrow \infty .
Similarly, as t \rightarrow \infty , we get

\.\alpha i,2 =  - k1 \.zi,1 =  - k1(zi,2  - k1zi,1) \rightarrow  - k1(z0,2  - k1z0,1) =  - k1 \.z0,1 = \.\alpha 0,2,

\alpha i,3 =  - k2zi,2  - zi,1 + \.\alpha i,2 \rightarrow  - k2z0,2  - z0,1 + \.\alpha 0,2 = \alpha 0,3,

xi,3 = zi,3 + \alpha i,3 \rightarrow z0,3 + \alpha 0,3 = x0,3;
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\"\alpha i,2 = \.zi,2  - k1 \.zi,1 = (zi,3  - k2zi,2  - zi,1) - k1(zi,2  - k1zi,1)

\rightarrow (z0,3  - k2z0,2  - z0,1) - k1(z0,2  - k1z0,1) = \.z0,2  - k1 \.z0,1 = \"\alpha 0,2,

\.\alpha i,3 =  - k2 \.zi,2  - \.zi,1 + \"\alpha i,2 =  - k2(zi,3  - k2zi,2  - zi,1) - (zi,2  - k1zi,1) + \"\alpha i,2(C.3)

\rightarrow  - k2(z0,3  - k2z0,2  - z0,1) - (z0,2  - k1z0,1) + \"\alpha 0,2

=  - k2 \.z0,2  - \.z0,1 + \"\alpha 0,2 = \.\alpha 0,3,

\alpha i,4 =  - k3zi,3  - zi,2 + \.\alpha i,3 \rightarrow  - k3z0,3  - z0,2 + \.\alpha 0,3 = \alpha 0,4,

xi,4 = zi,4 + \alpha i,4 \rightarrow z0,4 + \alpha 0,4 = x0,4;

...

As shown above, by induction, we can get limt\rightarrow \infty xi,j = x0,j for all i = 1, . . . ,m and
j = 1, . . . , n. Hence, we obtain limt\rightarrow \infty (xi  - x0) = 0 for all i = 1, . . . ,m.

This completes the proof of Lemma 3.8.
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